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Weak Lensing
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Abstract. In the preceding chapters, the effects of lensing were so strong as to
leave an unmistakable imprint on a specific source, allowing a detailed treatment.
However, only the densest regions of the universe are able to provide such a spec-
tacular lensing effect. To study more representative regions of the universe, we must
examine large numbers of sources statistically. This is the domain of weak lensing.

1 Introduction

1.1 Motivation

Weak lensing enables the direct study of mass in the universe. Lensing, weak
or strong, provides a more direct probe of mass than other methods which
rely on astrophysical assumptions (e.g. hydrostatic equilibrium in a galaxy
cluster) or proxies (e.g. the galaxy distribution), and can potentially access
a more redshift-independent sample of structures than can methods which
depend on emitted light with its r−2 falloff. But strong lensing can be ap-
plied only to the centers of very dense mass concentrations. Weak lensing, in
contrast, can be applied to the vast majority of the universe. It provides a
direct probe of most areas of already-known mass concentrations, and a way
to discover and study new mass concentrations which could potentially be
dark. With sources covering a broad redshift range, it also has the potential
to probe structure along the line of sight.

Specifically, we might expect weak lensing to answer these questions:

• Where are the overdensities in the universe ?
• Are they associated with clusters and groups of galaxies ? Does light

trace mass in these systems ?
• How much do these systems contribute to Ωm, the mean density of matter

in the universe ?
• What is their mass function and how does that function evolve with

redshift ? What does that imply for the dark energy equation of state ?
• What are the structures on larger scales (walls, voids, filaments) ?
• Is this structure comparable to that seen in cosmological simulations?

Which cosmology matches best ?
• What is the nature of dark matter ?
• Can observations of lensing put any constraints on alternative theories of

gravity ?
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Until recently, deep imaging on the scale required to answer the above
questions with weak lensing was simply impractical. The development of large
mosaics of CCDs has expanded the field greatly. The large data volume leads
to ever-decreasing statistical errors, which means that very close attention
must be paid to systematic errors and calibration issues. Weak lensing results
must be carefully scrutinized and compared with those of other approaches
with this in mind.

We start with a review of the basic concepts, the limits of weak lensing,
and observational hurdles, and then address the above astrophysical ques-
tions.

1.2 Basics

The transition from strong to weak lensing can be seen at a glance in the sim-
ulation shown in Figure 1. Over most of the field, no one galaxy is obviously
lensed, yet the galaxies have a slight tendency to be oriented tangentially to
the lens. We seek to exploit this effect to derive information about the lens,
and perhaps about the weakly lensed sources as well.

Fig. 1. Simulated effects of a lens: source plane (left) and image plane (right). Most
regions of the lens can be probed only with weak lensing. Real sources are not in
a plane, but this does not dramatically affect the appearance. Real lenses, such as
galaxy clusters, would obscure much of the strong-lensing region.

We start with the inverse magnification matrix (see also Chapter on
quasar lensing)

M−1 = (1 − κ)

(

1 0
0 1

)

+ γ

(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

, (1)
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so called because it describes the change in source coordinates for an infinites-
mal change in image coordinates, the inverse of the transformation undergone
by the sources. This is Equation 16 of the Quasar Lensing chapter, which
derives M−1 and defines the quantities within. We repeat here that the con-

vergence κ represents an isotropic magnification, and the shear γ represents a
stretching in the direction φ. They are both related to physical properties of
the lens as linear combinations of derivatives of the deflection angle. However,
κ can be interpreted very simply as the projected mass density Σ divided by
the critical density Σcrit, while γ has no such straightforward interpretation.
In fact, γ is nonlocal: its value at a given position on the sky depends on
the mass distribution everywhere, not simply at that position. We will see
this fact rear its ugly head in several places throughout this chapter. Shear
is often written as a vector γi = (γ cos 2φ, γ sin 2φ) or more succinctly as a
complex quantity γei2φ.

Without multiple images of a source (as in the strong lensing case), we
must have some independent knowledge of the sources if we are to measure
magnification or shear. For example, if one source were a standard candle
or ruler, the apparent magnitude or size of its image would immediately
yield the magnification at that point. Of course, standard candles or rulers
occur only in very special cases [17], so in practice we must analyze source
distributions. We no longer get much information from a single source, and
thus lose resolution; this is the tradeoff we must make for probing regions
with weak tidal fields.

One source distribution that could be used in this way is n(m), the number
of galaxies as a function of apparent magnitude. In practice, this is difficult,
because the measured slope of this distribution does not differ greatly from
the critical slope at which equal numbers of galaxies are magnified into and
out of a given magnitude bin, with no detectable change (n ∝ m0.4). There
is enough difference to make some headway, but we would prefer to measure
departures from zero rather than small changes in a large quantity.

The distribution of galaxy shapes, properly defined, does allow us to mea-
sure departures from zero. Approximate each source as an ellipse with posi-

tion angle φ and (scalar) ellipticity ǫ = a2−b2

a2+b2
, where a and b are the semi-

major and semiminor axes. Define a vector ellipticity ei = (ǫ cos 2φ, ǫ sin 2φ),
or equivalently a complex ellipticity ǫei2φ (also called polarization). This en-
codes the position angle and scalar ellipticity into two quantities which are
comparable to each other; the dependence on 2φ indicates invariance under
rotation by 180◦. Figure 2 gives a visual impression of ellipses in this space.

We can now quantify the visual impression of Figure 1. In the absence
of lensing, as in the left panel, galaxies are randomly oriented: The observed
distribution of ei is roughly Gaussian with zero mean and an rms of σe ∼ 0.3.
In the presence of lensing, as in the right panel, this distribution is no longer
centered on zero, as long as we consider an appropriately-sized patch of sky.
In fact, we will assume that any departure from zero mean must be due to
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Fig. 2. A sequence of ellipses with various amounts of each ellipticity component.
Inspired by the appearance of these ellipses, the two components are often labeled
e+ and e×.

lensing. We will examine the limits of this assumption in some detail later, but
for now let us accept that on large enough scales, the cosmological principle
demands it, and as a practical matter, we average over sources at a wide
range of redshifts, which are too far apart physically to influence each other’s
alignment.

The effect of the magnification matrix on the complex ellipticity can be
computed if M is constant over a source. This is obviously not valid for very
large sources or those near caustics, but it is valid for the vast majority of
the sky and for typical sources with sizes of a few arcseconds. The result is
that ǫI = ǫS + γ

1−κ
, where superscripts indicate image and source planes [18].

We don’t know any of these quantities for a single source, but we do know
(or assume for now) that 〈ǫS〉 = 0, where brackets indicate averaging over
many sources. Hence

〈ǫI〉 = 〈 γ

1 − κ
〉. (2)

The quantity on the right is called the reduced shear g. A second approxima-
tion we can often make is that κ ≪ 1, so that 〈ǫI〉 = 〈γ〉. This is called the
weak lensing limit.

The fundamental limit to the accuracy with which we can measure γ in
the weak lensing limit is shape noise, or the width of the source ellipticity dis-
tribution σe ∼ 0.3. Averaging over n sources should decrease the uncertainty
to σe√

n
, but n is limited by the depth of the observations and the area over

which we are willing to average γ; these tradeoffs are discussed below. Also
note that knowledge of the shear alone is not strictly enough to infer mass
distributions because of the mass sheet degeneracy [44,111], introduced in a
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different context in the Quasar Lensing chapter. This degeneracy arises be-
cause a uniform sheet of mass induces only magnification, not shear. Because
the equations are linear, we could therefore add or subtract a mass sheet
without affecting the shear. In practice, we can still answer many questions
with shear alone, as discussed below.

1.3 Cosmology dependence

Both convergence and shear scale as the combination of angular diameter
distances DLSDL

DS
, or as the distance ratio DLS

DS
for a given lens. (Recall from

the Quasar Lensing chapter that DLS, DL, and DS are the angular diameter
distances from lens to source, observer to lens, and observer to source, re-
spectively. Note that DS 6= DL +DLS; see [59] for a quick review and [101] for
a thorough treatment of distance measures in cosmology). This cosmology-
dependent quantity is plotted as a function of source redshift in Figure 3 for
several lens redshifts and two different cosmologies. In principle, this could
be used to constrain the cosmology if source redshifts are known, and if the
lens mass is known independently (the effects of a larger lens mass and a
larger universe are degenerate). But this remains an unused cosmological
test because lens parameters and source redshifts are usually poorly known.
Usually, a cosmology is assumed and lens parameters are estimated using any
available knowledge of source redshifts. Less often, a well-characterized lens
is used to explore the source redshift distribution. However, source redshift
distributions are usually quite broad, and weak lensing can only be used to
estimate the mean distance ratio to a group of sources, which is not same
as the distance ratio corresponding to the mean redshift. Section 1.4 deals
with ways of estimating the mean distance ratio or otherwise accounting for
a broad source redshift distribution.

Another way of viewing the same information is to fix the source redshift
and plot this ratio as a function of lens redshift (Figure 4). This reveals the
relative importance of different structures along the line of sight and is often
called the lensing kernel or lensing efficiency.

1.4 Applicability of weak lensing

As with all astrophysical tools, we must be aware of the limitations of weak
lensing before plunging into results. They include the weak lensing approxi-
mation itself; mass sheet degeneracy if only shear is used; poor angular resolu-
tion because of its statistical nature; source redshift difficulties; and possible
departures from the assumption of randomly oriented sources. We now ex-
amine these limits and ways of dealing with them.

Weak lensing approximation The approximations that M is constant
over each source and that κ ≪ 1 cannot be applied when dealing with the
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Fig. 3.
DLSDL

DS
as a function of source redshift, for several lens redshifts (indicated

by the intersections of the curves with the horizontal axis) and several cosmologies.
The cosmologies are Λ-dominated (solid lines, H0 = 70 km s−1 Mpc−1, Ωm = 0.3,
ΩΛ = 0.7) and open (dashed lines, H0 = 70 km s−1 Mpc−1, Ωm = 0.4, ΩΛ = 0).
Each solid line is higher than its dashed counterpart, reflecting the larger size of
the Λ-dominated universe. Although this quantity appears to be a sensitive test of
the cosmology, it is degenerate with the lens mass.

centers of massive clusters and galaxies. Of course, analysis of such regions
is not lacking—it is the topic of most of this book. Here we merely wish
to mention work that has been done on combining weak and strong lensing
information [1]. We also note that, where only the second approximation fails,
Equation (2) can be solved iteratively for κ.

Mass sheet degeneracy Mass sheet degeneracy was a serious concern when
fields of view were small and lens mass distributions extended well beyond
the edges. Modern imagers now deliver fields of view ∼ 0.5◦ on a side (> 3
Mpc radius for any lens at z > 0.15), so this concern has diminished. The
degeneracy may also be broken by adding magnification information, which
may come from strong lensing, or from a method called the depletion curve.

Magnification imposes two effects of opposite sign on the areal density
of sources. Galaxies fainter than the detection limit (or any chosen bright-
ness threshold) are amplified above the threshold, increasing the density of
sources, but at the same time the angular separation between galaxies is
stretched, decreasing the density of sources. The net effect depends on the
slope of n(m), the (unlensed) galaxy counts as a function of magnitude. A
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Fig. 4. Same as for Figure 3, but as a function of lens redshift, for several values
of source redshift (which correspond to the right-hand end of each curve). The
lensing efficiency is a very broad function, making it difficult to separate unrelated
structures along the line of sight.

logarithmic slope less than 0.4 (usually the case at visible wavelengths, but
barely) will not provide enough “new” sources to overcome the dilution ef-
fect, so the source density decreases as κ increases toward the center of a
cluster. This depletion curve reveals lens parameters, as shown in Figure 5
[88]. Despite the name, the method need not be restricted to one-dimensional
information [22]; [88] includes a lens ellipticity and position angle estimate
based on a crude depletion map. In practice, measuring magnification is quite
difficult, because the slope of n(m) is perilously close to 0.4, and there are
few published depletion curve measurements [88,40]. For the remainder of
this work, we shall concentrate on algorithms and results using shear, not
magnification.

Angular resolution The angular resolution of weak lensing is limited by
the areal density of sources. With a shape noise of σe ∼ 0.3 and

√
n statis-

tics, a shear measurement accurate to p percent requires ∼ 1000p−2 sources.
Angular resolution is then set by the area of sky over which these sources are
scattered. This in turn depends on the depth and wavelength of the observa-
tions; in R there is one source per square arcminute in a one-magnitude wide
bin at R ∼ 21.4, increasing by a factor of ∼ 2.5 for every magnitude deeper
[122]. A medium deep observation capable of shape measurements to R ∼ 25
thus yields about 20 galaxies arcmin−2 (assuming a bright cutoff R > 23.5 to
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Fig. 5. Left: theoretical depletion curves for a variety of lens velocity dispersions
(lens mass ∝ σ

2
v). Right: depletion curve observed for MS1008-1224 in V band.

From [88].

eliminate largely foreground sources), implying that 2 arcmin2 are required
for 5% accuracy in shear.

Getting more sources per unit area requires much more telescope time.
Source density will ultimately be limited by confusion — when sources are
so numerous that they overlap and hinder shape measurements — around
∼ 1000 sources arcmin−2 for ground-based data. This implies ∼ 20′′ shear
resolution, or better for space-based data, if galaxy counts keep rising at the
same rate. However, such depth is hard to come by and must compete against
area and wavelength coverage (useful for constraining source redshifts) when
planning for a given amount of telescope time.

Another tradeoff commonly used is to sacrifice resolution in one dimension
to achieve better resolution in the other. Clusters are commonly analyzed in
terms of a radial profile, which assumes they are axisymmetric and allows
all sources at a given radius from the cluster center to be averaged together.
Less massive clusters and groups can be “stacked” to yield an average profile
with reasonable resolution, just as in galaxy-galaxy lensing [57,116].

Source redshift distribution Lack of knowledge of the source redshift
distribution is often a limit in calibrating weak lensing measurements. The
root of this problem is that deep imaging quickly outruns the ability of even
the largest telescopes to provide spectroscopic redshifts for a fair sample of
sources.

The recent development of photometric redshift techniques, in which mul-
ticolor imaging provides enough spectral information for a reasonable redshift
estimate citeConnolly1995,Hogg1998, has brought hope that source redshifts
may be estimated to sufficient accuracy from imaging alone. For example,
the Hubble Deep Field yielded photometric redshifts accurate to ∼ 0.1 per
galaxy in the redshift range 0 − 1.4 with seven filters extending through the
near-infrared (UBV IJHK) [60]. A look at Figure 3 shows that this provides
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a reasonable accuracy in distance ratio in most situations. The accuracy
improves with the number of filters used, resulting in a tradeoff between
accuracy and telescope time. Deep U and infrared imaging are much more
expensive than BV RI in terms of telescope time, but it is difficult to effec-
tively cover a large redshift range with only BV RI. Few spectral features
are to be found in the observed BV RI bandpasses for sources in the redshift
range ∼ 1.5 − 3, which greatly increases uncertainties there.

However, these problems are not fundamental, and photometric redshifts
will become routine. They will do much more than help estimate the mean
distance ratio required for calibrating lenses. Because sources lie at a range of
redshifts, they will provide the opportunity to probe structure along the line
of sight (albeit with resolution limited by the width of the lensing kernel). The
ultimate goal is tomography — building up a three-dimensional view of mass
in the universe from a series of two-dimensional views at different redshifts.
The combination of weak lensing and photometric redshifts thus promises
to be very powerful, but as yet there are not many published examples of
combining the two, and little theoretical work on optimal ways of doing so.
Although we can expect photometric redshifts to be a routine part of future
lensing work, we must be aware of alternative ways of confronting the source
redshift problem.

First, some questions can be answered without calibration of source red-
shifts. The two-dimensional morphology of a cluster lens is one example — the
source redshift distribution should not depend on position (as long as mag-
nification is negligible and cluster members do not contaminate the source
sample). Similarly, source redshifts are not required for discovery of mass
concentrations in surveys, but without them, the volume probed is unknown.
Clearly, the questions which can be answered this way are limited.

A more general calibration strategy is through additional, identical ob-
servations of a “control lens” of known redshift and mass (e.g. a cluster with
a dynamical, X-ray, and/or strong lensing mass estimate). This does allow
estimation of the mean distance ratio to a population of sources much too
faint to reach with spectroscopy, but it certainly has its limits. It is difficult to
obtain identical observations, and the (probably considerable) uncertainty in
the mass of the control lens becomes a systematic for the rest of the data. But
more fundamentally, shear from the control lens samples only that part of the
source distribution which is behind the control lens, so that strictly speaking,
a control lens must be at the same redshift as the target. For weak lensing
by large-scale structure, the distribution, not simply the mean distance ratio,
is required. This would require control lenses at a range of redshifts, which
is impractical. Photometric redshifts should do a much better job with more
realistic data requirements. Even in the age of photometric redshifts, though,
this method will have its role. The shear induced by calibrated lenses will pro-
vide a check on photometric redshift estimates, which may not be checkable
with spectroscopy if applied to very faint sources.
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Another strategy is keeping the imaging as shallow as current redshift
surveys, which go to R ∼ 24. One can then look up the median redshift for
any magnitude cut; for 23 < R < 24, for example, the median redshift is 0.8
[29]. Even the redshift distribution is known to some extent, with 120 sources
in that magnitude slice in the survey cited. Shallow imaging need not probe
a small volume, as a large area can be covered with a reasonable amount
of telescope time. But it does limit the distance probed and the angular
resolution of the mass reconstruction (because the areal density of sources is
low at R ≤ 24). This strategy also limits selection of sources based on color,
which is very useful for limiting contamination by galaxies in a cluster being
studied (or for de-emphasizing foreground contamination in general) because
the median redshift of a color-selected sample is not yet something that can
be looked up in a redshift survey.

Intrinsic alignments The crucial assumption in weak lensing is that the
sources have random intrinsic orientations, so that any departure from ran-
domness is due to lensing. This assumption is worth examining before pro-
ceeding further. We will concentrate on potential damage to measurements
of weak lensing by large-scale structure (cosmic shear), because the lensing
signal from clusters is usually at a much higher level. However, it is worth
keeping in mind that all applications of weak lensing could be affected at
some level.

The first detections of cosmic shear in 2000 motivated several analytic
[25] and computational [54,36] studies of intrinsic alignment mechanisms,
and the field is still sorting itself out. There are several mechanisms which
could produce such intrinsic alignments, including tidal stretching of galaxies
in a gravitational potential, and coupling of the potential to the spin vectors
of galaxies [34]. The amount of alignment predicted as a function of angular
scale varies greatly depending on the mechanism and the strength of the
coupling; it remains unknown which model, if any, is correct. However, in
most scenarios, intrinsic alignments would represent a <

∼ 10% contamination
of the cosmic shear measurements.

While the situation is still evolving, one rule is certain: the effect of any
intrinsic alignment is diluted when sources lie at a large range of redshifts,
as is naturally the case in deep imaging. As we shall see, the signal from
lensing by large-scale structure increases with source redshift. Hence, lensing
must dominate at high enough source redshift, and intrinsic alignments at
low enough source redshift. This is illustrated by Figure 6, which shows pre-
dicted intrinsic alignment and cosmic shear levels for several source redshifts.
For shallow surveys like the Sloan Digital Sky Survey [141] (SDSS), intrin-
sic alignment may frustrate attempts to measure cosmic shear, but deeper
surveys specifically designed to measure cosmic shear are safe. Indeed, the
roughly one million spectroscopic redshifts SDSS plans to acquire will be in-
valuable in measuring intrinsic alignments precisely, and their measurements,
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after scaling to higher redshifts, in turn may facilitate estimation and even
removal of intrinsic alignment effects from the deeper surveys. Deep surveys
may also be able to provide a lensing signal using only sources which cannot
be physically associated, as indicated by their photometric redshifts. Density
reconstruction methods in the presence of intrinsic alignments are already
being investigated [83].

Fig. 6. The importance of intrinsic alignments depends strongly on source redshift.
The expected levels of ellipticity correlation (defined in Section 3.1) due to intrinsic
alignments and to weak lensing by large-scale structure are shown for low-redshift
(median source redshift zm = 0.1) surveys in the left panel and for high-redshift
(zm = 1) surveys in the right panel. In each case, the straight line indicates the
expected signal from weak lensing, and the curves indicate the expected signal from
intrinsic alignments, for two different values of a spin-coupling parameter, giving
some idea of the modeling uncertainties. The right panel also contains cosmic shear
measurements from the literature, which all happen to have zm ∼ 1. Adapted from
[34].

The two or three detections of intrinsic alignments in real data are indeed
at low redshift. Ellipticity correlations have been reported in SuperCOSMOS
data [23], but because there is no redshift information, intrinsic alignments
can only be inferred (the median source redshift is estimated to be < 0.1,
so that the inferred cause is intrinsic alignments rather than lensing). Spin
alignments have been found in the Tully catalog, which consists of several
thousand nearby (within a few Mpc) spirals [102], and in the PSCz, a red-
shift survey of 15500 galaxies detected by the IRAS infrared satellite mission
[84]. Because these catalogs have redshift information, these represent solid
detections. However, spin correlations are one step removed from ellipticity
correlations, which are the relevant quantity for lensing.
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It may also be possible to extract intrinsic alignments from the lensing
data itself. To first order, lensing produces a curl-free, or E-type (in analogy
with electromagnetism) shear field. (Multiple scattering can produce a weak
divergence-free, or B-type field, but that can be safely ignored for the mo-
ment.) Therefore, decomposition of a measured shear field into E-type and
B-type fields might allow separation of the lensing and intrinsic alignment ef-
fects [35]. This decomposition is difficult, but a crude indicator of the B-type
field is the traditional 45◦ test. In this test, a lensing signal should van-
ish when one component of the shear is exchanged for the other (equivalent
to rotating each source by 45◦), and nonzero results would indicate a sys-
tematic error. All published cosmic shear results were vetted using this test
among others, with no indication of contamination. However, not all intrinsic
alignment mechanisms produce B-type power; an example is tidal stretching
(tidal fields are the basic mechanism for both stretching and lensing, after
all). Based on other astrophysical arguments, tidal stretching is not likely to
be significant [35], but even angular momentum coupling models can pro-
duce much more E-type than B-type correlations [86]. Passing the 45◦ test is
a necessary but not sufficient condition for confidence in the results.

In summary, intrinsic alignments are not to be dismissed. They must be
addressed and may even dominate the lensing signal in certain low-redshift
applications. However, the dilution effect of a broad source redshift distribu-
tion means that none of the conclusions of weak lensing to this point can be
called into doubt. Ongoing and future weak lensing studies may have to ap-
ply small corrections for this effect, but how small is still uncertain. Accurate
corrections will probably be available by the completion of the SDSS, which
will do much to increase our knowledge of intrinsic alignments in the nearby
universe.

1.5 Measuring shear

In most weak lensing work, a source galaxy is approximated as an ellipse fully
described by its quadrupole moments

Ixx ≡ ΣIwx2

ΣIw

Iyy ≡ ΣIwy2

ΣIw
(3)

Ixy ≡ ΣIwxy

ΣIw

where I(x, y) is the intensity distribution above the night sky level,w(x, y) is a
weight function, the sum is over a contiguous set of pixels defined as belonging
to the galaxy, and the coordinate system has been translated so that the first
moments vanish (i.e. the centroid of the galaxy is chosen to be the origin of the
coordinate system). Early work used intensity-weighted moments (w = 1),
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but it was realized that this produces ellipticity measurements with noise
properties that are far from optimal or even divergent. Now, w is usually
chosen to be a circular [73] or elliptical [15] Gaussian, which deweights the
outer pixels which have a big lever arm but low signal-to-noise. The two
ellipticity components can be defined as [130]

e+ =
Ixx − Iyy

Ixx + Iyy

e× =
2Ixy

Ixx + Iyy

(4)

These are related to the scalar ellipticity ǫ and position angle φ by

ǫ = (e2+ + e2×)
1

2

φ =
1

2
tan−1(

e×
e+

) (5)

Then a simple estimate of the shear in the weak lensing limit is γi = 〈ei〉/2,
where the brackets denote averaging over many sources (perhaps with weight-
ing of the sources based on estimated measurement errors, redshift, etc.) to
beat down shape noise. Note that this definition of ellipticity differs from that
in Equation (2) by a factor of two; both definitions are presented here because
both are common in the literature. This latter estimator sometimes called the
distortion statistic. Also, there are alternative formulations in terms of oc-
tupole moments [48], Laguerre expansions [15] and shapelets [107,108,27].
Before applying any of these estimators, we must account for the effects of
point-spread function (PSF) anisotropy and broadening.

PSF anisotropy No optical system is perfect, and PSFs on real telescopes
tend to be ∼ 1 − 10% elliptical. This constitutes a huge systematic error,
of the order of the shear induced by even a massive cluster, and it must be
removed as completely as possible before analyzing any galaxy shapes, and
monitored afterward. The removal can be done after measuring shapes, by
essentially subtracting the moments of the PSF from the galaxy moments, but
a more computationally stable method is to remove this effect from the image,
before measuring shapes. This is done by convolving the image with a kernel
with ellipticity components opposite to that of the PSF [47]. The raw PSF is
almost certainly position-dependent; therefore the circularizing kernel is also,
but the convolved PSF is everywhere round. A round PSF is called isotropic,
but keep in mind that this does not imply homogeneous: The convolved
PSF may vary somewhat in size, because of the position dependence of the
original PSF and of the small broadening introduced by the kernel. A more
sophisticated scheme would introduce more broadening in the right places,
leading to a PSF which is homogeneous as well as isotropic. It is also possible
to choose a sharpening kernel, but this would amplify the noise in the image.
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Figures 7 and 8 illustrate the effectiveness of the convolution procedure.
Although there are low-level residuals in the convolved image, their lack of
spatial correlation means that they will have difficulty masquerading as a
weak lensing effect. Note that these PSF anisotropies change with time, as
telescope temperature, focus, and guiding drift, so that each exposure must be
treated separately. A possible benefit here is that if the anisotropies are really
uncorrelated temporally, coaddition of multiple exposures will beat down the
shape errors. Also, each CCD in a mosaic must be treated separately, as some
discontinuities may arise from small differences in piston between devices.

1000 2000

1000

2000

3000

4000

x (pix)

1000 2000

x (pix)

Fig. 7. Point-spread function correction in one 2k×4k CCD. Shapes of stars, which
as point sources should be perfectly round, are represented as sticks encoding ellip-
ticity and position angle. Left panel: raw data with spatially varying PSF elliptici-
ties up to 10%. Right panel: after convolution with a spatially varying asymmetric
kernel, ellipticities are vastly reduced (stars with ǫ < 0.5% are shown as dots), and
the residuals are not spatially correlated as a lensing signal would be.

PSF broadening Any effect which broadens the PSF will reduce the mea-
sured ellipticities of source galaxies which are not much larger than the PSF—
generally including the distant galaxies most appropriate for lensing—because
they will be broadened relatively more along their minor axes than along their
major axes. In ground-based data, the dominant effect is “seeing”, the broad-
ening of the point-spread function due to turbulence in the atmosphere. Note
that this is distinct from PSF anisotropy, which is caused by the telescope
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Fig. 8. Another way of plotting the efficacy of the PSF correction, often seen in
the literature. For the same dataset shown in Figure 7, the ellipticity components
of point sources are shown in a scatterplot, before and after correction. This type of
plot hides any spatial correlation which may exist among the residuals, but Figure 7
shows that the residuals are uncorrelated in this case.

and camera optics. In fact, seeing produces a circular PSF as long as the inte-
gration time is much longer than the coherence time of the atmosphere (very
roughly 30 ms at visible wavelengths); anyone who has observed in terrible
seeing has probably noticed that at least the PSF is nicely round ! The ef-
fects of PSF anisotropy and broadening are sometimes called “shearing” and
“smearing”, respectively. The former has the effect of introducing a spurious
weak lensing signal if uncorrected, while the latter has the effect of reducing
any weak lensing signal.

There are several ways of correcting for smearing. The first is measur-
ing the dilution of a simulated weak lensing signal relative to an unsmeared
image, either simulated or perhaps from the Hubble Deep Fields. The seeing-
free images are sheared by a known amount, convolved with the point-spread
function of the real data, repixelized, and the shear measured. This has the
advantage of including some effects which cannot be accounted for analyti-
cally, such as the coalescing of separate objects into an apparently elliptical
single object.

On the other hand, a global correction is rejected by those who prefer
to tailor the corrections to individual sources; after all, a large galaxy is
smeared relatively less by seeing than is a small one. The advocates of this
approach tend to use the KSB method, an analytical approach which takes
into account the size of the PSF and of each source [73]. The KSB method also
accounts for PSF shearing, but it can just as well be applied to a convolved
image. See [70,71,82,15] for limitations of and possible successors to the KSB
method. These approaches also weight each source according to its ellipticity
uncertainty when computing a shear estimate.
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Source selection Not every source in a deep image should be included in
a shear measurement. A typical deep image includes stars, other unresolved
sources, foreground galaxies, cluster members if the target lens is a cluster,
and spurious objects, such as bits of scattered light around very bright stars.
Getting rid of these unwanted sources is something of an art, which must
reflect the particular data set, but generally there are four kinds of cuts.
Magnitude cuts help get rid of stars (for reasonable galactic latitude, stars
outnumber galaxies for R <

∼ 22 while galaxies greatly outnumber stars for
R > 23) and bright foreground galaxies. Galaxies have a broad luminos-
ity function, so such a cut is never completely effective at eliminating the
foreground, but it helps. Color cuts seek to emphasize the faint blue galax-
ies at z ∼ 1 [124]. If the target is a cluster, the cut should be blueward
of the cluster’s color-magnitude ridge. Even so, some cluster members and
other foreground galaxies will survive. Size cuts eliminate unresolved objects,
which at the relevant magnitudes include some stars, but mostly unresolved
galaxies. Finally, cuts designed to insure that an object is not spurious must
depend on the type of data available. Examples include rejecting objects that
appear on only one of a multicolor set of images, and rejecting high ellipticity
objects which are likely to be unsplit superpositions of two different objects.

Sanity checks There are a number of sanity checks that should be performed
before believing any weak lensing result. In addition to the 45◦ test mentioned
above, randomizing source positions while retaining their shapes should result
in zero signal. Another good sanity check is correlating the source shapes with
an unlensed control population, such as a set of stars. Finally, there are checks
on the basic integrity of the catalog, such as the position angle distribution of
sources, which might reveal spurious objects aligned with the detector axes.
Because setting the source selection criteria can be somewhat subjective, it
is also good to check that the results do not depend crucially on the exact
magnitude or color cut.

2 Lensing by clusters and groups

Clusters of galaxies have long been studied from two somewhat opposing
points of view. Visible from great distances, they are a convenient tracer
of structure in the universe back to roughly half its present age. When ex-
amined individually, they are interesting astrophysical laboratories in their
own right, with a variety of physical conditions and histories. But if so, they
cannot be simple cosmological probes. So the study of clusters as astrophys-
ical laboratories must inform and refine the study of clusters as cosmological
probes.

What lensing adds to the study of clusters is a direct mass measurement
without any assumptions about the dynamical state of the cluster. The first
clusters were “weighed” in the 1930’s with the dynamical method—assuming
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that clusters are in virial equilibrium, the virialized mass is easily computed
from the velocity dispersion. In the late 1980’s, X-ray imaging of hot intraclus-
ter gas began to provide mass estimates, assuming hydrostatic equilibrium.
In the 1990’s, lensing began to provide mass estimates free of any such as-
sumptions. The frequent agreement of the three types of estimate indicates
that the dynamical assumptions are often valid, but the exceptions need to
be identified. Those exceptions must be discarded from any samples used as
cosmological probes, but they are often studied more closely for what they
might reveal about mergers or other nonequilibrium processes.

In the past decade, it was enough simply to compare lensing measurements
of cluster masses with those provided by other techniques. Driven by advances
in wide-field detectors, we can now use lensing to search for clusters (or at
least mass concentrations), and even estimate their redshifts. Shear-selected
samples of clusters, free of any bias toward baryons that optically and X-ray
selected samples might have, are currently being compiled. Comparison of
the different types of samples will be instructive, either by confirming the
use of traditional baryon-selected samples as cosmic probes, or perhaps by
providing some counterexamples.

2.1 Masses and profiles

The first evidence of lensing by clusters came in the late 1980’s in the form
of strongly lensed giant arcs [85,118], which were used to constrain the mass
inside the radius at which the arcs appeared. This was soon extended to
somewhat less strongly lensed “arclets”, and by 1990, to the first detection
of what we now call weak lensing, the coherent alignment of thousands of
weakly lensed background galaxies [125]. This alignment was measured in
terms of the tangential shear γt, which is the component of shear directed
tangential to an imaginary circle centered on the cluster and running through
the source. The tangential ellipticity of a source is et ≡ ǫ cos(2θ) where θ is
the angle from the tangent to the major axis of the source (Figure 9). When
computing et from the ellipticity components, use the rotation

et = +e+ cos(2β) + e× sin(2β)

ec = −e+ sin(2β) + e× cos(2β) (6)

where the angle β is also shown in Figure 9. Here ec is a control statistic
measuring the alignment along an axis 45 degrees from the tangent, which is
not affected by an axisymmetric lens.

Methods for constraining cluster masses using tangential shear followed
soon after the first detection of the effect [91]. The most important of these
is aperture densitometry, which relates γt to the difference between the mean
projected mass density inside a radius r1 and that between r1 and a larger
radius r2 [45]:

κ̄(< r) − κ̄(r1 < r < r2) =
2

1 − r21/r
2
2

∫ r2

r1

γt

1 − κ(r)
d ln r. (7)
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Fig. 9. Tangential ellipticity et of an ǫ = 0.7 source with respect to a reference
point. et carries the lensing signal, and the 45-degree component ec serves as a
control. In the presence of lensing but not shape noise, all sources would have
et > 0 and ec = 0; in practice 〈et〉 > 0 and 〈ec〉 = 0.

The factor 1 − κ can be ignored in the weak lensing limit, but for massive
clusters may not be ignored, leading to an iterative solution for κ (e.g. [47]).
The left hand side of this equation is sometimes called the zeta statistic

ζ(r1, r2). Note that this formula makes the mass sheet degeneracy explicit by
specifying only relative values of κ; the best that can be done is extend r2 to
a very large value, at which κ should vanish.

A profile can be built up by repeatedly applying this statistic at a sequence
of different r1. However, this makes the points in the profile dependent on
each other, as they use much the same data. If the goal is to find the best
fit of a given type of profile, it is simpler to compute γt in a series of in-
dependent annuli and fit the shear profile expected from the mass model
straightforwardly with least-squares fitting.

Weak lensing mass profiles are usually well fit by a singular isothermal
sphere (SIS) or Navarro-Frenk-White (NFW, [98,99]) profile (see [76] for an
extensive list of profiles used in lensing, along with their associated formu-
lae). However, the nature of weak lensing makes it difficult to distinguish
between models on two accounts. First, shear profiles do not have good dy-
namic range because the uncertainty in shear measurements increases dra-
matically at small radii, where there are not enough sources to beat down
the shape noise. This is illustrated in the top panel of Figure 10. Note that
this figure is for a very massive cluster; the signal-to-noise ratio can only be
lower for less-massive clusters. Second, mass profiles which differ significantly
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inside the radius where shear is measured can produce shear profiles which
differ significantly only outside that radius. This is illustrated in the middle
panel of Figure 10. The ability to distinguish between NFW and SIS (or
more generally, power-law profiles) thus depends strongly on the size of the
field [77], but Figure 10 demonstrates that a significant ambiguity remains
even with a state-of-the-art imager with a 35’ field. Weak lensing is therefore
not definitively revealing cluster mass profiles, as one might have expected.
Progress toward larger fields will be slow, as most large telescopes already
have imagers which fill their usable fields of view. More likely, progress will
come by adding magnification information. Finally, note that the most active
(and revealing of the nature of dark matter) controversy surrounding cluster
profiles involves cuspiness at the center, and this is not well addressed by
weak lensing, with its poor angular resolution.

Initially, weak lensing analyses of clusters concentrated exclusively on the
most massive clusters which were guaranteed to give a good signal. As the
technique has matured, it has been extended to less massive, but more typical
clusters [139]. The ultimate extension has been to groups; although a group
by itself does not provide enough shear to get an accurate mass estimate,
they can be “stacked” as in galaxy-galaxy lensing to build up an average
profile with reasonable signal-to-noise [57]. The idea of stacking to obtain
a good estimate of the average profile has been used for typical clusters as
well [116]. Caution is required when interpreting “average” results, though,
because they may be biased by a few unrepresentative systems, or in the
worst case, meaningless if the sample is sufficiently heterogeneous.

Mass estimates of clusters and groups derived from weak lensing generally
agree with estimates from velocity dispersions and X-ray imaging (see [89] for
a list of published mass estimates as of 1999; there are now too many to list).
At one time there was an apparent systematic discrepancy between (strong)
lensing and X-ray estimates [93], but it was shown to be due to the complex-
ities of the X-ray-emitting gas dynamics [3]. Hydrostatic equilibrium alone
was shown to be less constraining than initially thought; temperature maps
were needed [8]. XMM and Chandra now provide these, along with vastly im-
proved angular resolution which allows for better treatment of cooling flows,
and the first results show good agreement with lensing [4]. Of course, not
every cluster behaves so well, and when there is disagreement a closer look
often reveals interesting astrophysics such as cooling flows, mergers and their
associated “cold fronts” or shock heating. In fact, ∼50% of clusters show
some substructure in the X-ray [114]. Weak lensing can still supply the total
mass, but due to its poor angular and line-of-sight resolution, the detailed
work of disentangling the structures must be left to X-ray and dynamical
measurements.

The three approaches, after all, have some fundamental differences which
are not often mentioned. Dynamical estimates based on the virial theorem
measure the total virialized mass of the cluster, while lensing can only mea-
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Fig. 10. Comparison of shear, convergence, and mass profiles for the massive
cluster Abell 1689. Top: (Reduced) shear profile, with best-fit SIS and NFW profiles
almost indistinguishable. Middle: κ profiles, showing that the NFW model falls off
much more steeply than the SIS at large radii. This could barely be seen in the shear
profile because of the nonlocality of shear. Despite appearances, the data do not
favor the SIS. The points here are plotted assuming that outside the largest radius
measured, the shear falls off as an SIS. If NFW is instead assumed for radii outside
the measurement area, the points at large radius fall significantly. Bottom: Enclosed
mass profiles of the two models. The physical scale is roughly 2 kpc arcsec−1. From
[28].

sure mass projected inside a certain radius. Even with a simplifying assump-
tion such as spherical symmetry, a fair comparison of the two is difficult. Virial
masses go as the square of the velocity dispersion, so small-number statistics
and outliers can have a large effect on the mass [109]. Mass estimates from
a dozen members may be good for a back-of-the envelope comparison, but
beyond that should be treated with extreme caution. Velocity profiles would
be more comparable to lensing and X-ray data. These are available for few
clusters, but thanks to multi-object spectrographs on large telescopes, such
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detailed dynamical analyses are becoming more common [16]. X-ray emis-
sion is proportional to the square of the density, so it is more sensitive to
substructure than is lensing, which is simply proportional to the density. A
fourth approach, the Sunyaev-Zel’dovich effect (SZE), measures the decre-
ment in the cosmic microwave background (CMB) caused by upscattering of
CMB photons by the hot intracluster gas. Like lensing, it is proportional to
the density, but like X-ray emission, it depends on the density of baryons,
rather than all matter. The first SZE measurements are starting to arrive
and will soon offer their unique point of view.

Lensing stands out from X-ray and dynamical methods in being a pro-
jected statistic, so it is worth asking whether this introduces any bias. It
appears that anisotropy in simulated clusters has little systematic effect [21],
and so do uncorrelated structures along the line of sight [56]; both effects are
around the 5% level. However, in reality there are also correlated structures
along the line of sight, and these can bias masses upwards by tens of percent
[26,90]. There is general agreement that the effect of other structures along
the line of sight increases with aperture size. The bias changes with redshift
in two ways. First, it is minimized when the cluster is near the peak of the
lensing kernel (Figure 4), because other structures will be deemphasized. Sec-
ond, younger clusters may have more nearby material, although this effect
has not been investigated thoroughly [90]. Finally, note that the mass func-
tion is susceptible to bias even when an estimator is unbiased but has scatter,
because there are more low-mass clusters to be scattered up than high-mass
clusters to be scattered down (this applies equally to other types of mass
estimates such as dynamical and X-ray) [90].

2.2 Two-dimensional structure

From the first detection of weak lensing, it was realized that the tangential
shear procedure could be repeated about any reference point, not only the
cluster center. By repeating it at a grid of points, a two-dimensional “mass
map” (actually a map of κ) was constructed [125]. This was soon put on
a firm theoretical footing by the derivation of a relationship between the
Fourier transforms of κ and γ, starting from their relationship as different
linear combinations of the second derivatives of the lensing potential ψ [72]
(see the Quasar Lensing chapter for the relationship between ψ and κ). Es-
sentially, κ can be expressed as a convolution of γ over the entire plane (there
is also a real-space equivalent [47]). Of course, observations do not cover the
entire plane, a problem called the finite field effect [10]. This is another mani-
festation of mass sheet degeneracy, as the spatial variation, but not the mean
value, of κ can be reconstructed. Several reconstruction methods based on
magnifications have been proposed to combat this problem [22,11], but, as
mentioned above, magnification is very difficult to measure, and these meth-
ods have not been widely used. To a large extent, technology has solved the
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problem, at least for clusters, by providing ever-wider fields of view, at the
edges of which κ is presumably negligible.

In addition to direct reconstruction methods, there are inversion methods
which solve for ψ, from which κ can be derived [12]. An extensive comparison
of different methods found none to be clearly superior [119], although inver-
sion methods tend to make it easier to include additional constraints such as
those from magnification measurements or strong lensing features.

Many clusters have now been mapped using these techniques, and the
mass distributions recovered are generally not surprising. That is, they roughly
follow the optical and X-ray light distributions, on the scales which weak lens-
ing is able to resolve. A vivid example of two-dimensional mass reconstruction
is that of the supercluster MS0302+17 [74] (Figure 11). This supercluster
contains three clusters separated by 15-20′ on the sky (∼ 3 − 4 Mpc trans-
verse separation at a redshift of 0.42). All three clusters are recovered by the
reconstruction algorithm, above the level of other, presumably noise, peaks.

Fig. 11. Mass map of the supercluster MS0302+17, smoothed on a scale of 90
arcseconds (black indicates higher density). Each of the three densest blobs corre-
sponds to a known galaxy cluster. From [74].

This result is robust: it remains when the source selection criteria are varied,
and it disappears when the source positions are randomized. There appears
to be a filament connecting two of the clusters, but the authors advise cau-
tion, as the signal-to-noise is low, and real filaments are not expected to have
much contrast against all the other filaments and sheets expected to lie be-
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tween sources and observer. An equally striking reconstruction of the Abell
901/902 supercluster was recently published [50]. The close correspondence
of mass peaks and known clusters says something about the predictability of
dark matter, as discussed below.

Despite these successes, it is worth remembering that a map (or radial
profile) of κ is not a map of mass. κ can be converted to mass only with a
careful calibration of the source redshifts, which must include an estimate of
source contamination by the cluster itself. In massive clusters, magnification
provides another source of error by increasing the mean redshift of sources
which have been selected according to an apparent magnitude cut. This re-
sults in Σcrit being a function of radius, as it decreases at small radii where
the sources of a fixed magnitude tend to be more distant [47]. While much
attention has been paid to optimizing the formal reconstruction methods,
these more mundane problems require equal attention.

2.3 Mass and light

Does light trace mass ? The answer must be at least a qualified yes, because
the projected shapes of cluster lenses tend to agree with the shapes suggested
by their emitted light (Figure 12). However, the qualifications are important
!

First, the correspondence holds only on scales larger than galaxies. The
vast majority of visible-wavelength light from clusters comes from individual
galaxies, not diffuse emission. Although weak lensing is not well suited to
examine small scales, there is ample evidence from strong lensing that cluster
mass distributions (like their X-ray emissions) do not peak on galaxy scales
[123].

Second, not all light is equal. Blue light is dominated by very young stars,
while established stellar populations which presumably trace mass better
tend to be red. Hence small variations in star formation could scatter the
ratio of mass to blue light M/LB widely from system to system, but M/LR

should be much more stable. Unfortunately, the literature has a tradition of
quoting M/LB, which obfuscates the issue of whether mass is traced by light
from established stellar populations. Compounding this confusion are differ-
ent methods of computing rest-frame emission given the observed emission,
and the occasional quotation of M/L at z = 0, meaning that L has first been
adjusted to a value that it would have at z = 0 given passive evolution. Be-
cause stellar populations fade with time, L can decrease, and M/L increase,
significantly from its in situ value.

Third, even ifM/L were more consistently defined, it may not be constant
spatially or as a function of scale. Although the literature is full of mass
reconstructions which generally follow smoothed light distributions, the M/L
found varies widely, from ∼ 80h to ∼ 800h. Some of this is no doubt due
to different methods mentioned above, but there is reason to believe that
not all of it is. For example, the high value of ∼ 800h for MS1224+20 was
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Fig. 12. Projected mass and light density profiles of Abell 3364. The light pro-
files were observed in observer-frame Bj (blue line), V (green), R (red), and I

(black) filters, and computed in the same differential apertures used for the mass.
The light profiles have each been shifted vertically to intersect the innermost mass
point, hence they are in arbitrary units. Mass follows light surprisingly well on all
measurable scales. The dotted line shows the shape of an isothermal profile, which
is not quite a straight line with this estimator, to guide the eye (it has not been fit
to the data). The two lowest mass points are approaching the level of systematic
error estimated from the point-spread function. Note that in the aperture densito-
metry method, error bars on adjacent points are not independent, so that the errors
should be thought of as a band. From [139].

found independently by two different investigators [45,46]. Also, attempts to
uniformly treat samples of ∼ 10 clusters have found a range of M/L within
the samples [117,139]. There are some hints that some of the scatter may be
due to a trend of increasing M/L with cluster mass.

If so, this follows a broader trend in which groups have lower M/L than
the typical cluster [57], and typical galaxies have still lower M/L. The idea
that M/L might depend on environment is called bias. Specifically, bias is
when light is more concentrated than mass; the reverse, antibias, may also
occur. However, indications of antibias can be understood as a simple conse-
quence of stellar evolution and the choice of a blue bandpass [7]. In the end,
M/L may be more a question of star formation history and bandpasses than
of the nature of dark matter.

An alternative approach in terms of galaxy-mass correlations may offer
more promise. Because large mass concentrations are clearly more associated



Weak Lensing 25

with early-type galaxies than with later types (the morphology-density re-

lation), restricting the analysis to early-type galaxies might reveal a tighter
relationship to mass. This was first done for the MS 0302 supercluster, shown
in Figure 11 [74]. A cross-correlation between the projected mass density and
that predicted from the early-type galaxies revealed a strong relationship,
which did not vary with density, whereas a simple M/L would have acquired
variations from the variations in star formation activity. This approach has
been extended to the field, with similar conclusions [136]. Correlations be-
tween mass and light were found to be not so simple in the Abell 901/902
supercluster [50], but perhaps the difference is due to all light, not only that
from early-type galaxies, being used in the Abell 901/902 work. Still, the cor-
relation of mass with early-type galaxies must fail on some smaller scale, as
we know that galaxy groups have mass but generally no early-type galaxies.
Clearly more work is required in this area, as the correlation of mass with
different types of emitters may provide clues to the nature of dark matter.

2.4 Clusters as cosmological probes

There is a hidden agenda behind all the effort that has gone into measuring
cluster M/L: if cluster M/L is representative of the universe in general, the
mean density of the universe Ωm can be estimated simply by scaling the
local luminosity density by this ratio. This is one version of the fair sample

hypothesis, and it is one of the many ways to use clusters as cosmological
probes. These can be divided roughly into methods that extrapolate from
physical conditions in clusters (using clusters only because they facilitate
certain measurements), and methods which use clusters to diagnose formation
of structure in the universe.

Scaling the luminosity density by M/L is the simplest example of the
first type of method. The fair sample hypothesis remains just a hypothesis,
but it has nevertheless spawned many estimates of Ωm, which tend to be <

∼

0.4 [117,74,139,57]. However, the apparent variation of M/L with environ-
ment and age makes this approach suspect, and it is worth asking whether
any property of clusters other than light could be used in a similar scaling
argument.

The best candidate is the baryon fraction fb, the ratio of baryonic mass
to total mass. Because there is no reason to believe that infall into clusters
favors baryons over dark matter or vice versa, fb is plausibly equal to Ωb/Ωm.
In addition to being plausible, the baryonic hypothesis is easier to investigate
with simulations of structure formation, because tracking the baryons is easy
in such simulations; the hard part is simulating star formation and the resul-
tant light emission. With Ωb fairly well known from Big Bang nucleosynthesis
arguments [24], a determination of fb would quickly yield Ωm. Lensing can
provide an estimate of the total mass, while SZE measurements can probe
the dominant baryonic component, the intracluster gas. Simulations indicate
that the combination should reveal fb to 10% or better [142,39]. The first
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results from real clusters (but with total mass estimated from X-ray emission
rather than lensing) indicate Ωm ∼ 0.25 [51]. It should be noted that any
census of baryons is likely to be incomplete, as they can take many forms
which are difficult to detect (brown dwarfs, planets, etc.). Hence this method
provides a lower limit to fb and an upper limit to Ωm.

There is always a chance that physical properties of clusters such as fb

are simply not representative of the universe in general. A second and more
powerful class of cosmological probe uses clusters as tracers of structure. Only
their mass is important, and in particular, their mass function, the number
density of clusters as a function of mass. The redshift evolution of the cluster
mass function is a probe of Ωm: all else being equal, a high-density universe
should show more recent evolution than a low-density universe. In fact, it has
been argued that the existence of even one massive cluster at high redshift
(e.g. MS1054 at z = 0.83 [38] and now also ClJ1226.9+3332 at z = 0.88 [41])
demonstrates that evolution has not been as rapid as required if Ωm = 1 [19].
Conclusions based on a few massive clusters are suspect, however, because as
the extreme tail of a distribution, their numbers are highly dependent on the
assumption of Gaussianity in the primordial fluctuations. The argument can
even be turned around: given an independent measure of Ωm, cluster counts
can put strong constraints on primordial non-Gaussianity [106,78]. With plen-
tiful wide-field data now available and with weak lensing techniques having
been honed on less massive clusters, it will soon be possible to construct an
honest mass function, which will constrain both quantities [81]. The redshift
evolution of the cluster mass function can also constrain dark energy [55,67].
Without any uniform weak-lensing cluster samples, though, we must defer
this discussion to Future Prospects and turn our attention to progress in
obtaining such a sample.

2.5 Shear-selected clusters

The use of clusters as cosmological probes centers on clusters as mass con-
centrations, not as collections of galaxies and gas. Yet all cluster samples
compiled to date have been based on emitted light from galaxies (e.g. [2])
or from a hot intracluster medium [20]. Because these mechanisms do not
involve dark matter, which is the dominant component by mass, a mass
function based on these samples may well be biased. In addition, the r−2

falloff of emitted light implies that the high-redshift end of such samples will
always be dominated by the most luminous clusters, which potentially in-
troduces another bias. Shear-selected clusters are needed to investigate these
potential biases and provide a clean mass function, and this is currently an
active area in weak lensing.

First, a note on terminology. “Cluster” implies a collection of galaxies, but
if a large mass concentration with no visible galaxies were to be identified,
it would probably be called a “dark cluster”. Although “dark matter halo”
would be a more accurate term, it is used almost exclusively in theoretical
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and computational papers, not observational work. Here we shall continue to
use the term “cluster”, but we emphasize that this is a working hypothesis.
After large samples of shear-selected mass concentrations are thoroughly fol-
lowed up with other methods, it will become clear if a different term is more
appropriate.

Unfortunately, such samples are not available yet. Although many pre-
viously known clusters were studied with weak lensing in the 1990s, no sur-
veys for new clusters were conducted, partly because of the small fields of
view afforded by cameras on large telescopes until later in the decade, and
partly because techniques needed to be proven on known clusters first. The
first serendipitous detections of mass concentrations came when unexpected
peaks appeared some distance from the target in mass reconstructions of
known clusters.

In the first reported detection, a mass concentration was found projected
near Abell 1942 (7′ from the center), and confirmed by a mass map con-
structed with data from a different camera and at a different wavelength
[42]. There is no obvious concentration of galaxies associated with this mass,
although the area does contain a poor group of galaxies and some weak X-ray
emission. Because the redshift of the mass is unknown, its mass and M/L
are also unknown. However, with an upper limit on the light in the area,
the lower limit on M/L can be computed as a function of redshift. There are
redshifts for which the object could have a reasonable M/L, around 400 [49].
This object is therefore not necessarily more dark than some X-ray selected
clusters, which have M/L up to 600 or more [45,46] (see Section 2.3). If it
is at the redshift of Abell 1942 (z = 0.22), its M/L is at least 600, which
is very dark but just on the edge of the X-ray selected range, and perhaps
explainable in a merger scenario with Abell 1942 proper.

In a second detection, Hubble Space Telescope (HST) imaging revealed
an extra mass concentration one arcminute from the center of CL1604+4304
[128]. It is also seen in a second pointing shifted by 20′′ , so it is likely to be
real, but the interpretation is not clear. It seems likely to be substructure in
the cluster rather than an independent structure, but the necessary followup
is lacking. In a third case, serendipitous mass concentrations were found in a
survey of known clusters [139]. Some of these corresponded to galaxy groups,
which followup spectroscopy showed to be real and not associated with the
target clusters, although in the same general redshift range (the range to
which the lensing survey was of course most sensitive).

Although these hints were exciting, large “blank” fields (i.e. fields not
selected to contain a known cluster) are more appropriate for finding unam-
biguously new clusters, and the first truly convincing shear-selected cluster
was indeed discovered in such a field [138]. This object is clearly a cluster
of galaxies (Figure 13), with a solid spectroscopic redshift (0.28), velocity
dispersion (615 km s−1), and lens redshift coinciding with the spectroscopic
value (see Section 2.6). The M/L is at the high end of, but definitely within,
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the range found for optically and X-ray selected clusters. Although clearly
seen at visible wavelengths, no X-ray emission is detected at this position. A
second shear-selected cluster has recently been assigned a spectroscopic red-
shift [137]. At z = 0.68, this cluster begins to fulfill the promise of lensing in
terms of avoiding the r−2 falloff of methods which depend on emitted light.

Fig. 13. A shear-selected cluster of galaxies. At left is a κ map of a 40′ field
not selected to contain a previously known cluster; black indicates higher density.
The mass concentration at lower left corresponds to a cluster of galaxies (inset),
spectroscopically confirmed at a redshift of 0.28 and a velocity dispersion of 615
km s−1.

Finally, the most recent candidate makes perhaps the strongest case yet
for a dark cluster [94]. A tangential alignment was found around a point in
a randomly selected 50′′ STIS field, significant enough that the data allow
only a 0.3% chance of this occuring randomly. There are indications of strong
lensing as well. A nearby group of galaxies could provide enough mass to ex-
plain this only if its M/L is two orders of magnitude higher than expected. As
with the first two cases cited above, more followup, including a lens redshift,
is desperately needed to make sense of this candidate.

Thus far, the serendipitous shear detections present no clear pattern,
apart from the feeling that these are not typical optically or X-ray selected
clusters. There is no proof of truly dark clusters, something which only lens-
ing could detect. Perhaps this is only for lack of followup. Yet, the detection
of a truly dark cluster would reveal surprisingly little about the nature of
dark matter. Rather, it would indicate that either baryons did not fall into
the potential well created by the dark matter halo, or that star formation
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failed there. These are intriguing scenarios, but they raise questions about
baryons rather than answer questions about dark matter.

Meanwhile, there are several surveys of tens of square degrees currently
underway [127,37], which will yield samples of dozens of shear-selected clus-
ters, rather than a serendipitous few, and perhaps yield a better idea of
typical and extreme shear-selected clusters. Much work remains in terms of
settling on estimators which maximize detection of real mass concentrations
while minimizing false positives. For example, do we simply look for peaks
in convergence maps (or maps of some other quantity such as potential or
aperture mass), or do we apply a matched filter, which implies that we know
what we are looking for? While such work has been done theoretically and
computationally [104], we must get our hands dirty with real samples before
we can have much confidence in the scattered examples published as of today.

The advantages of shear selection in avoiding baryon and emitted-light
bias are obvious, but no single cluster-finding technique will be completely
unbiased. SZE selection [61] is an exciting new method which is also indepen-
dent of emitted light. This is especially important in going to high redshift
because of the r−2 falloff of emitted light. In this respect, SZE has the ad-
vantage because its background source is at a very high redshift (the cosmic
microwave background at z ∼ 1100), and because lensing is most efficient at
detecting clusters at much lower redshift than the sources. However, lensing
and SZE methods are so new that samples are not yet available. X-ray and
optical selection are more established, and X-ray surveys have recently made
great strides in detecting high-redshift clusters [20], indicating that it can
compete with other methods at z > 1 despite the r−2 falloff of emitted light.
X-ray emission has the additional advantage of depending on the square of
the local density, making it less vulnerable to projection effects (although the
density-squared dependence could be viewed as a disadvantage when trying
to determine the total cluster mass). Table 1 summarizes the properties of
these selection methods. In the end, comparison of differently selected sam-
ples will always be necessary, and much work remains to be done before we
can claim that all the important biases are known.

Selection Projection Emitted Baryon Samples
method effects? light? dependent? available now?

Optical yes yes yes yes
X-ray no yes yes yes
Lensing yes no no almost
SZE yes no yes almost

Table 1. Comparison of cluster selection methods.
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2.6 Tomography with clusters

Judging from the examples of the previous section, followup and identifi-
cation of shear-selected clusters will be more difficult than finding them.
The most basic parameter, redshift, is unknown in several cases. Without
a redshift, even the lens mass and M/L must remain unknown, leaving lit-
tle solid information. A spectroscopic redshift is impossible in the case of
the Abell 1942 field with no obvious lens-associated galaxies, and difficult in
the CL1604+4304 field, with CL1604+4304 itself projected so nearby. Thus,
there is a great need for a method of determining the lens redshift from the
lensing information alone.

If sources can be differentiated by redshift, the redshift of a lens will be
revealed by the way that shear increases with source redshift (Figure 3). Pho-
tometric redshifts are required for the sources, but this is straightforward if
the deep imaging required for the shear measurement is extended to multiple
filters. Two-filter imaging is routinely done anyway, to filter the sources based
on color. Four filters is sufficient to provide photometric redshifts accurate
to ∼ 0.1 on each source, which is accurate enough given the large amount
of shape noise on each galaxy and the breadth of the lensing kernel. This
method has been demonstrated on one cluster [138] (Figure 14). The most
likely lens redshift is within 0.03 of the spectroscopic redshift (z = 0.28), but
the formal error estimate is ∼ 0.1.

Obviously, lens redshifts cannot compete with cluster spectroscopic, or
even photometric, redshifts with this level of precision. Some improvement
is to be expected as photometric redshifts improve. For example, the filter
set used was not designed to be optimal for photometric redshifts, but future
large surveys will be paying close attention to this issue. Also, the work
cited neglected to use sources which were undetected in one or more filters,
but photometric redshifts are not impossible to assign to such sources, and
their inclusion could improve the statistics. A rigorous treatment would take
account of each source’s photometric redshift error estimate, and so on. Work
is needed on optimal lens redshift algorithms.

Still, lens redshifts can be useful even at this level of accuracy. The most
basic use is to confirm the unstated assumption in all cluster weak lensing
work to date—that the cluster is the lens, not merely in the same line of
sight. While no doubt valid, confirmation of such basic assumptions is always
welcome. Second, in cases where dark mass concentrations are found with-
out any associated galaxies, a lens redshift is the only way to constrain the
basic parameters of the mass concentration. Indeed, if there is any skepti-
cism about such claims, it would be conclusively dispelled by demonstrating
that the observed shear increases with source redshift in the predicted way.
Third, large weak lensing surveys may find enough shear-selected clusters to
make complete spectroscopic followup burdensome. In that case, rough lens
redshifts may be good enough for examining statistics of many clusters, or
at least for identifying the more interesting candidates for followup. There-
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Fig. 14. Left: tangential shear as a function of source (photometric) redshift. The
dotted line is the best fit for a lens at the cluster spectroscopic redshift of 0.28,
while the dashed line is the best fit with the lens redshift derived from the lensing
data alone. (z = 0.30). Right: The lens redshift probability distribution derived
from the data at left. The method is promising: The most likely lens redshift is
within 0.03 of the cluster spectroscopic redshift, but the width of the distribution
is ∼ 0.1, indicating the need for more precise data. From [138].

fore, this type of tomography will probably be a routine feature of future
shear-selected surveys.

Finally, note how the spread in source redshifts would have caused more
uncertainty in shear had source redshifts not been known in Figure 14. One
way of improving cluster shear measurements, which until now have used at
most a color cut to avoid contamination of the sources by cluster members,
will be the use of photometric redshifts to weight sources. If Figure 14 is any
guide, this might make an improvement of up to a factor of two.

3 Large-scale structure

Clusters are not the largest structures in the universe. Although it had long
been known that clusters themselves tend to cluster, it was only in the
1980’s that redshift surveys began to reveal apparently coherent structures—
filaments and voids—on very large scales, up to ∼ 50 Mpc. Current redshift
surveys are producing impressive views of this foamy galaxy distribution out
to ∼ 600 Mpc, or z ∼ 0.2 [100]. But what about the mass distribution ?

Simulations of cold dark matter show similar structures in mass (Fig-
ure 15). Furthermore, they show how the evolution of large-scale structure
depends on cosmological parameters and on the nature of dark matter. Good
measurements of large-scale structure evolution should therefore be able to
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constrain cosmological parameters and the nature of dark matter through
comparison with simulations. Weak lensing is a good candidate for such com-
parisons, because like the simulations it deals with mass, not galaxies; and
because it can easily reach back to z ∼ 1 − 2, providing a long baseline in
cosmic time.

Fig. 15. Simulation from the Virgo collaboration showing the evolution of large-
scale structure in a 7◦ slice of a Λ-dominated universe, with black indicating highest
density. The dotted lines indicate z = 1 and z = 2. Adapted from [133].

Figure 15 illustrates just how many voids and filaments are expected to lie
between us and a source at z ∼ 1. Because of projection effects, weak lensing
will never produce stunningly detailed three-dimensional mass maps to allow
comparisons with such simulations. But weak lensing by large-scale structure
does leave a statistical signature. This “cosmic shear” is a strong function of
cosmological parameters, in particular, Ωm and σ8, the rms density variation
on 8 Mpc scales, and thus is potentially a very useful cosmological tool.
However, cosmic shear leaves a much weaker signal than do clusters, making
detection more difficult and systematics more dangerous. The first detections
of cosmic shear came in 2000, a decade after weak lensing by clusters was
detected. For that reason, cosmic shear is just beginning to take its place in
the cosmology toolbox.

3.1 Cosmic shear estimators

Cosmic shear, unlike the shear induced by clusters and groups, has no center,
and that has led to the formulation of a variety of statistics different from
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those used to analyze clusters. We summarize them here to provide the basis
for interpreting the results presented here and in the literature. Each of the
following statistics has advantages and disadvantages, and current practice is
to report results in terms of several different estimators to verify robustness.

A few comments apply to all the estimators mentioned below. Current
wide-field cameras have fields of view of ∼ 0.5◦, and all results to date have
been reported on these or smaller scales. But a look at Figure 15, with its
opening angle of 7◦, shows that such small fields will give different results
depending on where they happen to lie. Because of this cosmic variance,
one such field cannot really constrain the cosmology. A sample of randomly
chosen fields is required, with the field-to-field scatter in results giving some
idea of the cosmic variance. Observed variance could also be due to problems
with the instrument or telescope, so this is really an upper limit to the cosmic
variance, but it is still a very useful number. Some groups are currently doing
much larger fields by stitching together multiple pointings, sometimes with
sparse sampling, but multiple, widely separated fields are still required to
insure that cosmic variance has been beaten.

On small scales, the dominant statistical noise source is simply shape
noise, but systematics are also larger here. Small-scale PSF variations cannot
be mapped because the density of stars is too low; intrinsic alignments play
a larger role on small scales; and comparison to theory (not necessarily sim-
ulations) is hampered by the difficulty of modeling the nonlinear collapse of
dense regions. Results on scales < 1′ may say more about nonlinear collapse
and possibly intrinsic alignments than about the cosmology.

Mean shear The mean shear in a field (simply averaging all sources) will
in general be nonzero in the presence of lensing. However, it will tend to zero
for a field of any significant size, so this statistic is of limited use. We mention
it for completeness, as some early work with small fields of view used this
statistic. But mean shear in a small field of view is difficult to interpret, as
it could result from a single structure projected near the line of sight.

Shear variance The next logical step is to compute the variance, among
a group of boxes of angular size φ, of the mean shear in each box. Because
variance is a positive definite quantity, noise rectification must be subtracted
off. The importance of the noise rectification term depends on the number of
sources per box. Roughly speaking, for φ < 1′ , the noise rectification term is
larger than the lensing signal itself, but for larger φ the lensing contribution
dominates and at several arcminutes the noise correction becomes quite small.
Thus, measurements of shear variance at φ < 1′ should be treated with
caution (in addition to the cautions cited above for small scales). Usually
the results are presented as a function of φ, but the values for different φ
have been computed from the same data. Hence the errors on the different
scales are not independent, and results are sometimes less significant than
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appears at first glance. The true significance of such results can be explored
with bootstrap resampling. A rule of thumb suggested by bootstrap tests
is that measurements on widely differing scales (factors of 10) are largely
independent of each other even when computed from the same data.

Ellipticity correlations The observed ellipticities of lensed sources are
correlated, so it is natural to construct a correlation function which measures
this effect as a function of angular separation between sources. A simple
correlation of the ellipticity components e+ and e× would have little physical
meaning, though, as they depend on the orientation of the detector axes. If
the components of a pair of galaxies are instead defined with respect to an
imaginary line joining their centers, their correlation does have a physical
significance [92]. In fact, three useful functions can be defined:

ξ1(θ) ≡ 〈ei
+e

j
+〉

ξ2(θ) ≡ 〈ei
×e

j
×〉 (8)

ξ3(θ) ≡ 〈ei
+e

j
×〉

where superscripts label the sources and brackets denote averaging over all
pairs of galaxies i 6= j with angular separation θ.

Like shear variance, lensing induces ξ1 > 0 for all θ, but decreasing with
θ. Unlike shear variance, the computation of ξ1 does not result in a positive
definite quantity, so spurious results may be easier to identify. The behavior
of ξ2 in the presence of lensing by large-scale structure is more interesting:
at θ = 0, ξ2 and ξ1 are equal, but ξ2 drops more rapidly and goes negative at
some θ which depends on the cosmology (∼ 0.5−1◦). ξ3 is a control statistic.
Unaffected by lensing, it should vanish in the absence of systematic errors or
intrinsic alignments (this is equivalent to rotating one of each pair of galaxies
by 45◦). Taken together, these properties provide a signature with several
lines of defense against systematic error.

Like shear variance, values for different θ are computed from the same
data, so the same warnings about nonindependent angular bins apply. Unlike
shear variance, though, there are two independent quantities (ξ1 and ξ2)
at each θ, which can be checked against each other. For example, unless
ξ1(0) = ξ2(0) and ξ1(θ) > ξ2(θ) for θ > 0, the results are suspect. If these
checks make sense, ξ1 and ξ2 can be combined into a single higher signal-to-
noise measurement. In fact, shear variance can be understood as ξ1(0)+ξ2(0),
convolved with a square window function of width φ.

Aperture mass The aperture mass statistic Map was designed to address
the nonlocality of shear. It is a generalization of the ζ statistic already men-
tioned in the context of clusters [45,73]. As in the ζ statistic, tangential shear
is computed in a circular aperture, but here it is weighted with a compensated
filter function; the weight is positive at the center of the aperture and negative
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at the edges, for a total weight of zero. This has the remarkable property of
making adjacent apertures nearly independent, whereas the shear in adjacent
apertures is highly correlated. Map was first suggested as a way of looking
for clusters in wide-field images [112] , and later its variance 〈M2

ap〉 was pro-
posed as a measure for cosmic shear [113] (note that because the total weight
vanishes, so does the expectation value: 〈Map〉 = 0). Although aperture mass
tends to be noisier than the other estimators, its compensating virtue is that
measurements on different scales are almost completely independent.

Other estimators All of the above estimators are at most two-point statis-
tics. Higher-order statistics have been proposed. For example, values of the
projected mass field (κ or Map) should have a skewness due to many some-
what underdense regions (voids) and a few extreme overdense regions. This
skewness depends on Ωm and the matter power spectrum in a different
way than does the variance, leading to suggestions that together they could
constrain both quantities [14]. This non-Gaussianity may also be revealed
through morphological analysis of convergence fields [110,121,52]. All this re-
mains largely theoretical, as these high-order statistics are in practice noisier
than the two-point estimators which are providing the first detections of cos-
mic shear. There is a recent claim of detection of this non-Gaussian signature
[13], but an accurate measurement of skewness requires that rare massive ha-
los be present in the sample [32], hence a very large area is required. The
best way to the power spectrum itself may be through maximum likelihood
fitting to the shear data [66,31].

3.2 Observational status

Although the idea of weak lensing by large-scale structure was first suggested
in the 1960’s [80,53], the effect escaped detection for over three decades. The
first attempts at detection gave null results [79,130], which is not surprising
given the subtleness of the effect (∼ 1% shear) and the lack of sensitivity and
nonlinearity of photographic plates. The first analysis of CCD data, albeit
with the narrow field afforded by CCDs in 1994, also yielded only upper limits
[97]. With the advent of large-format CCD mosaics, detection was inevitable,
and four groups [140,131,6,75] announced detections in the span of one month
in 2000.

Their results are summarized in terms of shear variance in Figure 16.
The groups used four different cameras on three different telescopes, with
different observed bandpasses and data reduction procedures and analysis
techniques, yet the results were in good agreement. This has been taken as
proof that instrumental effects and systematic errors have been vanquished,
but in fact, the results should not agree if the data and source selection
resulted in different mean source redshifts. The fact that the areal density of
sources used was similar for all four groups suggests that the source redshifts
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Fig. 16. First detections of cosmic shear, in terms of shear variance versus angular
scale. The results of four different groups using three different telescopes and four
different cameras are shown, with good agreement. Note that different angular
bins from the same experiment are not independent. The dotted lines are for two
different source redshift distributions (lower, 〈z〉 = 1; upper, 〈z〉 = 2) in a ΛCDM
universe. Adapted from [75].

were similar despite the different approaches. But the possibility remains that
different source redshifts are hiding some disagreement.

Nevertheless, all results point to a low-Ωm universe. Figure 16 shows the
good fit to ΛCDM. It is difficult to constrain Λ with these measurements, but
shear variance should scale roughly with Ωm, so it is clear that Ωm = 1, for
example, is ruled out. While this was no surprise, it signaled the emergence
of cosmic shear as a new way to constrain Ωm, completely independent of
traditional methods (supernovae, CMB, age of the oldest stars in conjunction
with the Hubble constant, etc.).
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Since then, there have been further detections both in ground-based [87,58]
and space-based data [105]. The state of the art is a many-sigma detection
(whatever estimator is chosen) over 6.5 deg2 leading to quantitative con-
straints in the Ωm, σ8 plane [132]. There is a significant degeneracy between
Ωm and σ8; the first generation of cosmic shear papers simply assumed a
value of σ8 consistent with the local abundance of clusters. At the same
time, efforts to improve the signal-to-noise of cosmic shear measurements by
decomposition of cosmic shear into E and B modes are underway and appear
to have met with success [103].

Currently, several large (tens of square degrees) surveys are under way
with the goal of very high signal-to-noise analyses of cosmic shear [127,37,58].
At the same time, the question of how accurate the measurements can ulti-
mately get is being explored [5,43,82]. However, a word of caution is in order.
Such analyses tend to ignore the fact that the source redshift distribution
is not well known. The putative accuracy of current and near-future cosmic
shear measurements thus tends to be far too optimistic. For the moment,
the most accurate measurements in an absolute sense will be those which
are no deeper than current redshift surveys. Within a few years, though,
this will probably change as photometric redshifts are used to estimate the
source redshift distribution accurately enough. Photometric redshifts, in fact,
will enable probing the redshift evolution of cosmic shear; division of sources
into just two or three redshift bins can greatly improve the measurements of
cosmological parameters, specifically ΩΛ by a factor of ∼ 7 [62].

4 Future prospects

4.1 New applications

It is impossible to predict what new applications weak lensing might find, but
it is worth discussing one example of an interesting new direction: constraints
on theories of gravity. It is unlikely that weak lensing will serendipitously
reveal some new feature of gravity, because the lenses through which we look
are not well calibrated. But given an alternative theory of gravity, we can ask
if weak lensing observations are consistent with other observations.

Modified gravity is an attempt to explain differences between light dis-
tributions and inferred mass distributions without invoking dark matter. It
is possible to modify Newtonian gravity to account for some of the observed
differences such as flat rotation curves in galaxies, but a general correlation
between mass and light remains. If lensing were to find severe discrepancies
between mass and light, such as a dark cluster or clear misalignment of cluster
mass and light axes, this would represent a serious blow to modified gravity
[115]. There are some promising dark cluster candidates (Section 2.5), and
Abell 901b presents mass and light axes which apparently differ [50], but
there are no bulletproof examples. Weak lensing surveys of significant areas
are only now underway, so it will take some time before dark clusters can
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be ruled in or out with much confidence. Note that dark clusters are not
expected in dark matter scenarios; mass concentrations should accumulate
enough baryons to become visible, if only in X-rays. Thus an absence of dark
clusters would not favor modified gravity over dark matter, but their presence
of would disprove modified gravity as currently envisioned.

Recently, the first quantitative predictions of weak lensing in modified
gravity scenarios were published. Modified gravity, by increasing the strength
of gravity on large scales, would greatly enhance cosmic shear, inconsistent
with measurements. Thus, at the large scales probed by cosmic shear, the
r−2 force law cannot be modified—if gravity does depart from r−2, it is only
on scales from 10 h−1 kpc to 1 h−1 Mpc [134]. Weak (and strong) lensing
can also address modified gravity by constraining halo flattening [96]. Weak
lensing by large-scale structure can also provide a test of higher-dimensional
gravity [129].

4.2 New instruments

Today’s surveys of tens of square degrees will take years to find perhaps
dozens of shear-selected clusters and put some constraints on w, the dark
energy equation of state, as well as Ωm [55]. Tight constraints on both would
require a very deep survey of 1000 deg2 [67], taking decades with current
telescopes and instruments. The latest generation of 8-m class telescopes
does not really help, as their fields of view are small, typically ∼ 10′ or less
(an exception is the Subaru telescope which has a ∼ 24′ field of view with its
SuPrime camera, a likely source of weak-lensing results in the near future). A
new generation of wide-field telescopes specifically designed for surveys will
dramatically accelerate our ability to do cosmology with large lensing surveys.
These surveys will cover an area comparable to that of SDSS, but much more
deeply. The first of these to be funded is VISTA, a 4-m telescope with a 1◦

field of view currently in the design stage, but apparently it will be infrared-
only, limiting its usefulness for weak lensing. LSST, an 8-m class telescope
with a 3◦ field of view [126] and concentrating on visible wavelengths, may
also be built within a decade.

Figure 17 shows the potential of a 1000 deg2 survey which LSST could
easily accomplish. Of course, predictions such as these depend on the extrap-
olation of

√
n statistics to extremely large areas, so it is wise to ask what

systematic effects might provide a higher noise floor. Early work on cosmol-
ogy constraints from cluster counts assumed NFW profiles for all clusters
[81]. It was then realized that the profile makes a big difference, so that clus-
ter counts may tell us more about dark-matter profiles than about cosmology
[9]. However, new estimators have been proposed to circumvent this problem
[55]. Careful attention must also be paid to the issue of completeness versus
false positives in cluster-detection surveys [135]. Still, by the time LSST starts
operation, these issues may be worked out, and it may be well to survey all
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Fig. 17. 68% confidence limit constraints on ΩM and w for two values of mν , for
a weak lensing survey of 1000 deg2 down to R = 27, with photometric redshifts
providing the source redshift distribution. Current 1-σ constraints from type Ia
supernovae are shown for comparison. From [67].

the sky visible from the site. Such a survey would also provide a shear power
spectrum comparable in accuracy to the CMB power spectra of today.

Another probe of cosmology which may become feasible with such mas-
sive surveys involves the angular power spectrum of clusters. The linear part
of this power spectrum is essentially a standard ruler calibrated by the CMB,
so that a power spectrum of clusters at a particular redshift yields the an-
gular diameter distance to that redshift. A very large survey (∼ 4000 deg2)
could determine this as a function of redshift, which of course would yield an
absolute calibration of the distance scale and the Hubble constant [33].

4.3 New algorithms

The combination of lensing data with other types of data has been an active
theoretical area recently, and some of these algorithms will soon prove them-
selves observationally. Lensing plus SZE measurements of clusters will reveal
the baryon fraction in that environment, perhaps leading to a new estimate
of Ωm from baryon scaling arguments—or perhaps leading to new aspects
of cluster formation. Combinations of lensing and SZE plus X-ray data will
help deproject cluster mass and gas distributions [142].

Cross-correlation of lensing by large-scale structure with the CMB will
reveal parameters largely hidden from traditional CMB analyses, such as
dark energy, the end of the dark ages, and the gravitational wave amplitude
[64,65]. Lensing of the CMB itself may be detectable by the Planck satellite
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and constrain the amplitude of mass fluctuations between us and z ∼ 1000
[120], but this may have to wait for even higher-sensitivity CMB probes [63].
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